Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using RungeKutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the...
متن کاملRunge-kutta Methods for Parabolic Equations and Convolution Quadrature
We study the approximation properties of Runge-Kutta time discretizations of linear and semilinear parabolic equations, including incompressible Navier-Stokes equations. We derive asymptotically sharp error bounds and relate the temporal order of convergence, which is generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies on an interpretation of Run...
متن کاملRunge-Kutta convolution quadrature for operators arising in wave propagation
An error analysis of Runge-Kutta convolution quadrature is presented for a class of nonsectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ0 and a polynomial bound O(s 1) there, the stronger polynomial bound O(s2) in convex sectors of the form | arg s| ≤ π/2 − θ < π/2 for θ > 0. The order of convergence of the Runge-Kutt...
متن کاملGeneralized convolution quadrature based on Runge-Kutta methods
Convolution equations for time and space-time problems have many important applications, e.g., for the modelling of wave or heat propagation via ordinary and partial differential equations as well as for the corresponding integral equation formulations. For their discretization, the convolution quadrature (CQ) has been developed since the late 1980’s and is now one of the most popular method in...
متن کاملAn error analysis of Runge-Kutta convolution quadrature
An error analysis is given for convolution quadratures based on strongly A-stable RungeKutta methods, for the non-sectorial case of a convolution kernel with a Laplace transform that is polynomially bounded in a half-plane. The order of approximation depends on the classical order and stage order of the Runge-Kutta method and on the growth exponent of the Laplace transform. Numerical experiment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 2017
ISSN: 0897-3962
DOI: 10.1216/jie-2017-29-1-189